واکاوی چالش‌های آموزش رویکرد هندسی حل معادلات دیفرانسیل خودگردان: مصاحبه‌ تکلیف مدار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای ریاضی زمینه پژوهشی آموزش ریاضیات دانشگاهی

2 استاد دانشگاه شهید بهشتی

چکیده

چکیده: مطالعه چالش‌های آموزش رویکرد هندسی حل معادلات دیفرانسیل (DE) خودگردان یکی از بحث‌های آموزش ریاضی در سطح آموزش عالی است. به این دلیل، پژوهشی طراحی شد که هدف اصلی آن، شناخت جامعیت و عمق درک و فهم دانشجویان از (DE) بود. در این مطالعه، 17 دانشجوی علوم پایه و مهندسی شرکت کردند و داده‌ها، با استفاده از روش مصاحبه تکلیف‌- مدار جمع‌آوری شد. در این مصاحبه‌ها، از دانشجویان خواسته ‌شد که معادله دیفرانسیل داده شده را با رویکرد هندسی حل کرده و منحنی‌های جواب به دست آمده را با میدان شیب داده شده، منطبق نموده و دلیل انطباق را بیان کنند. تجزیه و تحلیل مصاحبه‌ها معلوم کرد که درک وجود ارتباط بین دستگاه‌های [y, f(y)] و [t, y(t)]، تعداد ریشه‌های f(y)=0 و تعداد جواب‌های تعادل، ارتباط بین تعداد نقاط تقاطع نمودار f(y) با محور افقی و تعداد جواب‌های تعادل، نقش دوگانه‌ y،  رابطه بین علامت f(y) و یکنوایی منحنی‌های جواب، تنظیم خط فاز و  بر چسب‌زدنِ جواب‌های تعادل، همگی از چالش‌های  آموزش رویکرد هندسی حل معادلات دیفرانسیل بودند. با این آگاهی، علت وجود این چالش‌ها مورد بررسی قرار گرفت  

کلیدواژه‌ها


فردین­پور، یونس کریمی. (1394 الف). چالش­های آموزشی رویکرد هندسی به معادلات دیفرانسیل: تجزیه و تحلیل منسجم رفتار کیفی. دوازدهمین سمینار معادلات دیفرانسیل و سیستم­های دینامیکی (SDEDS). تبریز، ایران.

فردین­پور، یونس کریمی. (1293 الف). ماهیت یادگیری معادلات دیفرانسیل معمولی. گزارش 45­اُمین کنفرانس ریاضی. دانشگاه سمنان، سمنان.

فردین­پور، یونس کریمی. (1393 ب). نظریه داده بنیاد در آموزش معادلات دیفرانسیل برای مفهوم آموزش پویای مبتنی بر کلاس درس. ارائه شده در سیزدهمین کنفرانس آموزش ریاضی ایران. دانشگاه شهید رجایی، تهران.

فردین­پور، یونس کریمی. (1393 پ). چارچوبی برای تحلیل خطاهای دانشجویان مهندسی در حل معادلات دیفرانسیل: مدل بافت. مجله ایرانی آموزش مهندسی. دوره 16، شماره 63، صص. 63 تا 111. فرهنگستان علوم ایران.

فردین­پور، یونس کریمی. (1392). آموزش ریاضی دانشگاهی برای دانشجویان مهندسی. 44­ماهیت یادگیری معادلات دیفرانسیل معمولی. گزارش 44­اُمین کنفرانس ریاضی. دانشگاه فردوسی، مشهد.

فردین­پور، یونس کریمی و گویا، زهرا. (1392). دیدگاه­ نوآورانه به آموزش ریاضی با تأکید بر نیازهای آموزش مهندسی. پنجمین کنفرانس ملی آموزش. دانشگاه شهید رجایی. تهران. 

فردین­پور، یونس کریمی و گویا، زهرا. (1391). تحلیل خطاها در درس­های معادلات دیفرانسیل. 43­اُمین کنفرانس ریاضی. دانشگاه تبریز، تبریز.

 

 

Artigue, M. (1992). Cognitive difficulties and teaching practices. In G. Harel & E. Dubinsky (Eds.); The concept of function: Aspects of epistemology and pedagogy (pp. 109- 132). Washington DC: The mathematical Association of America.

Allen, K.S. (2006). Students' participation in a differential equations class: Parametric reasoning to understand systems. An unpublished master thesis. Purdue University.PDF file. Retrieved January 2013 from: http://www4.ncsu.edu/~kakeene/karen%20final.

Arslan, S. (2010). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and its Applications. # 29, pp. 94-107, Available at: www.teamat.oxfordjournals.org.

Boyce, W. E., DiPrima, R. C.; & Mitrea, D. (2010). Elementary differential equations and boundary value problems. Wiley.

Camacho, M.; & et al. (2012). An exploration of students’ conceptual knowledge built in a first ordinary differential equations course (part i). The Teaching of Mathematics. Vol. XV- 1. pp. 1–20.

Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. Pine Forge Press.

Dana-Picard, T. & Kidron, I. (2008). Exploring the phase space of a system of differential equations: Different mathematical registers. International Journal of Science and Mathematics Education. 6: 695Y717, National Science Council, Taiwan.

Fardinpour, Y. K. (2015). Challenges of understanding of qualitative behavior analysis. 9th Congress of European Research in Mathematics Education (CERME 9). February 4-8, Prague, Czech Republic.

Fardinpour, Y. K. & Gooya, Z. (2013). Using “IRDO” model to identify errors made by students in differential equations exams. 8th Congress of European Research in Mathematics Education (CERME8). Antalya, CERME8 WG14 – 141212.

Habre, S. (2003). Investigating students’ approval of a geometrical approach to differential equations and their solutions. Journal of Mathematical Education in Science and Technology, 34, 651–662.

Habre, S. (2013). Writing in a reformed differential equations class.  Retrieved January 2013 from: http://www.math.uoc.gr/~ictm2/Proceedings/pap64.pdf,

Habre, S. (2013). Writing in mathematics enhanced by technology. Retrieved January 2013 from:     http://archives.math.utk.edu/ICTCM/VOL23/S110/paper.pdf.

Habre, S. (2000). Exploring students’ strategies to solve differential equations in a reformed setting. Journal of Mathematical Behavior, 18(4), 455-472.

Keene, K. A. (2007). A characterization of dynamic reasoning: Reasoning with time as parameter. The Journal of Mathematical Behavior, 26(3), 230-246.

Keene, K. A.; Rasmussen, C.; & Stephan, M. (2012). Gestures and a chain of signification: The case of equilibrium solutions. Mathematics Education Research Journal, 24(3), 347-369.

Rasmussen, C. and K. Whitehead. (2003). Learning and teaching ordinary differential equations. MAA Online Research Sampler. , Retrieved January 2013 from:

http://calculus- course.maa.org/t_and_l/sampler/rs_7.html#support.

Rasmussen, C. L. (2001). New directions in differential equations: A framework for interpreting students’ understandings and difficulties. The Journal of Mathematical Behaviour, 20, pp. 55–87.

Rasmussen, C.; & Kwon, O. N. (2007). An inquiry-oriented approach to undergraduate mathematics. The Journal of Mathematical Behavior, 26(3), 189-194.

Rasmussen, C.; Zandieh, M.; & Wawro, M. (2009). How do you know which way the arrows go? The emergence and brokering of a classroom mathematics practice. Mathematical representations at the interface of the body and culture, 171-218.

Schoenfeld, A. (2000). Purposes and methods of research in mathematics education. Notices of the AMS, Volume 47, Number 6, June/July 2000. 

Zandieh, M. & McDonald, M. (1999). Student understanding of equilibrium solution in differential equations. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education (pp. 253-258). Columbus, OH: ERIC.