تبیین مفهومی تفکر ریاضی: چیستی،‌ چرایی و چگونگی

نوع مقاله: مقاله پژوهشی

نویسنده

دکتری آموزش ریاضی

چکیده

چکیده: همه دانش‌آموزان می‌توانند به صورت ریاضی‌وار فکر کنند و عمق و پیچیدگی ایده‌های ریاضی‌ خود را به عنوان هدف مهم آموزش ریاضی، ‌افزایش دهد. هر چند این مهم هنوز به طور گسترده، در کلاس‌های ریاضی‌ اتفاق نیفتاده است، زیرا ارتقای تفکر ریاضی با چالش‌هایی روبروست که یکی از آن‌ها، تبیین مفهومی تفکر ریاضی ‌است. لذا این مطالعه، بر آن است که چیستی، چرایی و چگونگی چالش‌های تفکر ریاضی را از طریق مرور رویکردهای مختلف به تفکر ریاضی، تبیین کند. ،  به طور نظام‌وار‌ مرور شده و مورد نقد و بررسی قرار گرفته‌اند. از بین رویکردهای موجود، توصیف ریاضی‌دانان از تفکر ریاضی برای تبدیل آن به فعالیت‌های یاددهی و یادگیری ریاضی، به تفصیل شرح و بسط داده شده است. علاوه براین، چالش‌های پیش رو برای توسعه تفکر ریاضی نیز بیان شده است. این مقاله، چشم‌انداز روشنی برای محققان آموزشی در حالت کلی و برای محققان آموزش ریاضی در حالت خاص، ترسیم می‌کند.
 

کلیدواژه‌ها


 

Arslan, S. (2010a). Do students really understand what an ordinary differential equation is? International Journal of Mathematical Education in Science and Technology  41(7): 873-888.

Arslan, S. (2010b). Traditional instruction of differential equations and conceptual learning. Teaching Mathematics and its Applications  29(2): 94-107.

Ben-Zeev, T. (1996). When erroneous mathematical thinking is just as “correct”: The oxymoron of rational errors. The nature of mathematical thinking, 55-79.

Bruner, J.S., Goodnow, J.J., & Austin, G.A. (1986). A study of thinking: Transaction Publishers.

Burton, L. (1984). Mathematical thinking: The struggle for meaning. Journal for Research in Mathematics Education, 35-49.

Carroll, J.B. (1993). Human cognitive abilities: A survey of factor-analytic studies: Cambridge University Press.

Clements, M. A.; & Ellerton, N. F. (1996). Mathematics Education Research: Past, Present and Future.

Dreyfus, T. (1991). Advanced mathematical thinking processes. Advanced mathematical thinking, 25-41.

Dreyfus, T., & Eisenberg, T. (1996). On different facets of mathematical thinking. The nature of mathematical thinking, 253-284.

Ginsburg, H.P. (1996). Toby’s math. The nature of mathematical thinking, 175-202.

Gray, E., & Tall, D. (2001). Relationships between embodied objects and symbolic procepts: an explanatory theory of success and failure in mathematics.

Harel, G., Selden, A., Selden, J., Gutiérrez, A., & Boero, P. (2006). Advanced mathematical thinking. Handbook of research on the psychology of mathematics education: past, present and future, 147-172.

Kaput, J.J. (1992). Technology and mathematics education: Macmillan.

Karadag, Z. (2010). Analyzing Students' Mathematical Thinking in Technology-supported Environments. (Doctor of Philosophy), Toronto.  

Mason, J., Burton, L., & Stacey, K. (1982). Thinking mathematically: Addison-Wesley London.

Mason, J., Burton, L., & Stacey, K. (2010). Thinking mathematically: (New Edition). Addison-Wesley London.

Mayer, R.E., & Hegarty, M. (1996). The process of understanding mathematical problems. The nature of mathematical thinking, 29-53.

Miller, K.F., & Paredes, D.R. (1996). On the shoulders of giants: Cultural tools and mathematical development. The nature of mathematical thinking, 83-117.

Moseley, D. (2005). Frameworks for thinking: A handbook for teaching and learning: Cambridge Univ Press.

National Council of Teachers of Mathematics. (2000). Principles and standards for school mathematics. Reston, VA. The Author.

Rasmussen, C., Stephan, M., & Allen, K. (2004). Classroom mathematical practices and gesturing. Journal of Mathematical Behavior, 23(3), 301-323.

Rasmussen, C., Zandieh, M., King, K., & Teppo, A. (2005). Advancing mathematical activity: A practice-oriented view of advanced mathematical thinking. Mathematical Thinking and Learning, 7(1), 51-73.

Roach, E., & Lloyd, B.B. (1978). Cognition and categorization: Hillsdale, New Jersey.

Ryken, A.E. (2009). Multiple representations as sites for teacher reflection about mathematics learning. Journal of Mathematics Teacher Education, 12(5), 347-364.

Schoenfeld, A.H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. Handbook of research on mathematics teaching and learning, 334-370.

Stephan, Michelle, & Rasmussen, Chris. (2002). Classroom mathematical practices in differential equations. The Journal of Mathematical Behavior, 21(4), 459-490.

Sternberg, R.J., & Ben-Zeev, T. (1996). The nature of mathematical thinking: Lawrence Erlbaum.

Tall, D. (1991). The psychology of advanced mathematical thinking. Advanced mathematical thinking, 3-21.

Tall, D. (1992). The transition to advanced mathematical thinking: Functions, limits, infinity and proof. Handbook of research on mathematics teaching and learning, 495-511.

Tall, David. (2008). The transition to formal thinking in mathematics. Mathematics Education Research Journal, 20(2), 5-24.

Tall, David. (2013). How Humans Learn to Think Mathematically: Exploring the Three Worlds of Mathematics: Cambridge University Press.

Treffers, A., &. Vonk, H. (1987). Three dimensions: A model of goal and theory description in mathematics instruction-The Wiskobas Project: Reidel Dordrecht.

Yudariah, b. M. Y. and D. Tall (1998). Changing attitudes to university mathematics through problem solving. Educational Studies in Mathematics, 37(1): 67-82.

Zeynivandnezhad, Fereshteh, Ismail, Zaleha, & Mohammad Yosuf, Yudariah. (2013). Mathematical Thinking in Differential Equations Among Pre-Service Teachers. Jurnal Teknologi, 63(2).

Zeynivandnezhad, F. (2014). Mathematical Thinking in Differential Equations through a Computer algebra system, Faculty of Education, (Unpublished doctoral thesis), Universiti Teknologi Malaysia, Kualu Lampur, Malaysia.